
1

CHECK_MK BEGINNER GUIDE

Author: Marco Reale

Version: 1.0 – October 2016

Disclaimer:

Please consider this guide just as a bunch of notes and NOT as a professionally written document. My

intention is to give something back to the community and I haven't any relation with the company behind

Check_MK.

I assume no responsibility for the accuracy, completeness, or usefulness of any information or for damages

resulting from the procedures provided. Furthermore, this documentation is supplied "as is" without

guarantee or warranty, expressed or implied, including without limitation, any warranty of fitness for a

specific purpose.

I sincerely thank the Check_MK mailing list users because without their help I would not have been able to

write this guide.

Special thanks to:

Jolyon Brown: Help in translation

Mike Hulsman: Solution for Monitoring Microsoft Terminal Services

Brian Binder: Solution for Monitoring Microsoft Windows Event Log

Andreas Döhler: Explanation about Folders,Tags & Hostgroup

Evy Bongers: Explanation about Folders,Tags & Hostgroup

Apologies to anyone I’ve missed.

2

Summary
INTRODUCTION ... 4

Check_MK Setup .. 7

WATO – The Graphical User Interface ... 9

Views - Pane .. 10

Configuration – Pane ... 12

Users .. 13

Apply Changes ... 15

Managing agents ... 16

Agent Installation on Linux .. 16

Agent Installation on Windows ... 17

Devices Management .. 18

Folders ... 18

Tags .. 21

Hostgroup .. 24

Linux Devices ... 25

File System Monitoring .. 30

Linux Process Monitoring .. 34

Log Files ... 37

Windows Devices ... 40

Windows Event Viewer.. 40

Windows Services .. 44

Microsoft SQL Server ... 49

Microsoft Terminal Services .. 51

Network Devices .. 53

Managing Thresholds .. 58

Hardware & Software Inventory ... 62

Using custom plugins ... 69

Local Checks ... 70

MRPE – Nagios Plugins .. 71

MKP plugins ... 71

Monitor Apache Webserver .. 75

Monitor Mysql Server .. 77

Monitor Physical Hardware ... 81

Monitor Vmware ... 84

3

Add vSphere Virtual Center ... 84

Add ESXi host managed by Vcenter... 88

Add standalone ESXi hosts .. 90

Virtual Machines additional checks ... 92

Managing SNMP Traps .. 94

Managing Notifications ... 102

Contact group .. 104

Analysis .. 106

Check_MK Update ... 107

Package installation ... 107

Switching to the new version .. 108

Conclusion ... 110

4

INTRODUCTION

Every system administrator should know the current state of infrastructure they are responsible for. There

is nothing worse than realising much too late that a service is down or, even worse, to have users notify

you of problems you hadn’t yet noticed.

A good monitoring solution provides automated reporting of errors and malfunctions allowing immediate

intervention. In addition, this automation frees IT personnel from having to keep constant watch over all

infrastructure - servers, desktop computers, applications, traffic, etc. so they can use their time for other

tasks.

Unfortunately, not all companies understand the importance of such monitoring until there are serious

problems that affect their business. In my career I’ve had situations where managers asked me for the

reasons behind serious and continuous performance problems - and why we were not able to quickly

identify them. I’ve always replied that without a good monitoring solution, we were blind. I don't want to

claim that monitoring itself prevents any kind of outage or can ensure 100% uptime, because clearly there

are other important factors to consider (even organizational aspects). But believe me, it is extremely

important and helps prevent many potential outages.

In my opinion, an Enterprise monitoring solution should provide the following features out of the box:

scalability, multi-tenancy, granular access to hosts and services, customizable dashboards, notifications,

good performance graphs, automatic inventory of services being monitored, certified plugins for all

enterprise class hardware/software, understanding of parent & child relationships, flexibility in creating

custom checks and, last but not least, should be easy to install, use and maintain.

The market has plenty of solutions (both free and commercial), but most of them are difficult and time-

consuming with a steep learning curve and/or quite expensive. Over the last few years I’ve worked with

many products and, even though I must admit that I had some nice results, I never really found something

that completely satisfied me. I always find them lacking something or other.

One day though I came across Check_MK. A solution that, in a nutshell, claimed to make Nagios much

easier and more powerful to use.

As the official site states (http://mathias-kettner.com/check_mk.html), Check_MK is a comprehensive IT

monitoring solution in the tradition of Nagios. The main developer for the product is Mathias Kettner and

the company he has formed around it is located in Munich, Germany.

The following diagram (taken from the official website) shows how with the help of Check_MK and Nagios,

a complete monitoring solution can be assembled. The coloured boxes represent the components of the

Check_MK-Project.

5

Check_MK is available as a 100% open source package (known as the “Raw Edition (CRE)”) and as a

professionally supported “Enterprise Edition (CEE)” that comes with a lot of additional features such as:

-Agent bakery (packaging of individual monitoring agents)

-High performance and low latency via Check_MK Micro Core

-Reporting: Creation of individualized reports in PDF format

-Improved performance on distributed setup

-Auto expiration of acknowledged alarms

-Recurring planned-downtimes

You also can deploy the CEE by using or a hardware or software appliance.

For a complete comparison, please have a look at http://mathias-kettner.com/check_mk_introduction.html

In my opinion, these are the main Check_MK key features:

-Fully compatible with Nagios

-Excellent performance even on large environments

-Scale-out/Distributed monitoring with centralized management

-Graphical User Interface (WATO)

-Shorter learning curve compared to other Nagios solutions

http://mathias-kettner.com/check_mk_introduction.html

6

-Hundreds of certified plugins and supported devices

-Agent based monitoring for OSs and SNMP for network devices

The following table shows the four different ways that Check_MK can access services to be monitored:

(ref: https://mathias-kettner.com/cms_wato_monitoringagents.html)

https://mathias-kettner.com/cms_wato_monitoringagents.html

7

Check_MK Setup

In this guide I’m going to show how to set up and get started with Check_MK Raw Edition on a Centos 7.2

virtual machine. I always suggest installing the latest stable version that, at the time of writing (October

2016), is 1.2.8p13.

Requirements for TEST environment:

-Centos 7 64bit with 2vCPU, 4GB RAM, 30GB HD

-Working internet connection

-EPEL repository enabled

-SELinux disabled or properly configured

Please note that the above list is just for a TEST environment; to properly size a production server, there

are many variables to consider such as the number of monitored services and the hardware you are going

to place Check_MK on (carefully distinguishing between physical and virtual hardware).

There are some handy notes about sizing considerations at the following link: https://mathias-

kettner.de/checkmk_checkmk_benchmarks.html

https://mathias-kettner.de/checkmk_checkmk_benchmarks.html
https://mathias-kettner.de/checkmk_checkmk_benchmarks.html

8

Step by step setup:

1) Install Centos 7.2 64 bit

2) Check internet connection and enable EPEL repository

3) Download the last version of Check_MK and place it in /tmp/setup_checkmk/

(Please note that in this guide I started with 1.2.8p11 - just because later I’ll show how to update to

1.2.8p13. If this is the first time you are going to setup Check_mk, download the latest version!)

4) cd /tmp/setup_checkmk/

5) yum localinstall -ivh check-mk-raw-1.2.8p11-el7-36.x86_64.rpm

6) Create your first OMD site. You just have to choose a site name, like prod or test or whatever you like

(in this example I have chosen “mysite”). Then, as root user, you simply type:

omd create mysite

7) Using a browser, point to http://ip/mysite

8) Login to using default credentials:

username: omdadmin

password: omd

That’s all! As you can see the setup is really easy. I’d even describe it as being “windows like” - but without

the need to reboot

http://ip/mysite

9

WATO – The Graphical User Interface

WATO is a nice and powerful GUI through which it is possible to manage hosts and services being
monitored with Check_MK. Just please note that by using WATO, you can avoid the use of the command
line for many tasks but not all of them. Why? The best explanation is provided by Mathias on his website
from which I took the following screenshot:

(ref: https://mathias-kettner.de/checkmk_wato.html)

That said, I found that I could do most tasks using just the GUI. Moreover every new version seems to add

some WATO module so which brings into the GUI some tasks which previously had to be performed

manually.

10

This is the main WATO window that provides a global overview of Host and Services statistics as well as a

list of recent events.

On the left side there are two main sections: Views and Configuration

Views - Pane

In this section there are many views of different components like these:

11

It’s also possible do some useful searches. For example - did you ever try to find the switch port of a specific

MAC or IP address? With WATO, this can be done with just a couple of clicks.

12

Configuration – Pane

This menu is divided into many sections but by clicking on Main Menu you can access all of them from a

single point

I’m not going to describe each sub-menu but will cover a few of them in the following section.

13

Users

One of the first tasks that should be performed after the setup is the creation of users. Everyone who is

going to use check_MK should have their own custom credentials. This is done using WATO: Users

It’s possible to create a new user by cloning an existing one:

14

15

Apply Changes

Whenever changes are made in the configuration, we need to restart check_mk by clicking on the Changes

button followed by Activate Changes

16

Managing agents

Agents for many operating systems are available in WATO, Monitoring Agents. There are rpm and deb

packages but a manual installation is possible too. The Enterprise version provides a feature called agent

bakery that allows the creation of custom packages; combined with the Automatic Agent Update feature

available since version 1.2.8, the effort needed to update agents is extremely reduced, especially in large

environments. Running agents will listen on port TCP 6556.

Agent Installation on Linux

We are going to install the agent on localhost (where check_mk is running) using rpm. Installing the Agent

via RPM or DEB is very easy. All you have to do is to make sure xinetd is installed first and then install the

package.

Click on WATO, Monitoring Agents and select check_mk-agent rpm

17

You can download or copy it manually:

[root@checkmktst1 linux]# pwd

/tmp/setup_checkmk/agents/linux

[root@checkmktst1 linux]# wget http://localhost/mysite/check_mk/agents/check-mk-agent-1.2.8p11-1.noarch.rpm

--2016-08-19 14:37:13-- http://localhost/mysite/check_mk/agents/check-mk-agent-1.2.8p11-1.noarch.rpm

Resolving localhost (localhost)... ::1, 127.0.0.1

Connecting to localhost (localhost)|::1|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 24407 (24K) [application/x-rpm]

Saving to: ‘check-mk-agent-1.2.8p11-1.noarch.rpm.1’

100%[===>] 24,407 --.-K/s in 0s

2016-08-19 14:37:13 (473 MB/s) - ‘check-mk-agent-1.2.8p11-1.noarch.rpm.1’ saved [24407/24407]

[root@checkmktst1 linux]# rpm -ivh check-mk-agent-1.2.8p11-1.noarch.rpm

Preparing... ################################# [100%]

Updating / installing...

 1:check-mk-agent-1.2.8p11-1 ################################# [100%]

Reloading xinetd...

Redirecting to /bin/systemctl reload xinetd.service

The xinetd file should look like this:

/etc/xinetd.d/check_mk
service check_mk

{

 type = UNLISTED

 port = 6556

 socket_type = stream

 protocol = tcp

 wait = no

 user = root

 server = /usr/bin/check_mk_agent

configure the IP address(es) of your Nagios server here:

only_from = 127.0.0.1 10.0.20.1 10.0.20.2

 disable = no

}

Agent Installation on Windows

Download “check_mk_agent.msi” and install it on all servers that you need to monitor.

18

Restart the agent using:

net stop check_mk_agent && net start check_mk_agent

Devices Management

Managing devices doesn’t just mean adding or removing devices but also applying checks, creating rules,

thresholds and (last but not least) organizing them. In check_MK, this is achieved using Folders, Tags and

Hostgroup.

Basically, these are just different ways to achieve a common purpose: organizing devices so that

configuring them is easy even with a large number of hosts.

Managing hundreds or even thousands or devices could be very difficult without a proper classification that

allows rules to be applied to groups of objects instead of single entities.

The best analogy that comes to my mind is Microsoft Active Directory that allows policies to be created for

the entire domain (the root), sites or even just organizational units.

The question is, which one of them should be used?

Well, I opened a thread about this topic on the Check_MK English mailing list and I received some good

advice from expert users which, most of the time, suggest using both of them.

Let’s say you have 1000 devices in one site; in this case you can create folders for each category such as

Windows servers, Linux, UPS, Storage etc.

If you have 20 sites and 500 hosts you may want to create one folder for each site e.g. London, New York,

Paris and so on and then create subfolders for Linux, Windows, UPS etc.

But another option would be to create host tags.

Also hostgroups can make searching for hosts easier. You can create directories per project and assign host

tags accordingly. Using these host tags, you can assign hosts to project specific hostgroups, which makes it

possible to search for all hosts in a specific project. Also, you can allow customers or users within your

company access to their specific projects by making them contacts for their project specific host groups.

Folders

By default there is just the Main directory where devices are placed if no specific folder is chosen for them.

Click on WATO, Hosts, New folder to add more folders.

In this picture there are some folders within the Main directory and each one of them contains other sub

folders and devices accordingly to their topology

19

20

To place a device in folders, select the device and click on the folder icon

21

Tags

Clicking on WATO, Host Tags shows that there are some Tags already in place

To create a new Tag:

22

23

Tags can be applied during the New host wizard process - or after by editing the properties of the device.

24

Hostgroup

To create a new hostgroup click on WATO, New host group

To do Host group assignment: WATO, Host & Service Parameters, Grouping

25

Linux Devices

To add, remove a device, use WATO: Hosts

26

As Agent Type, leave the default Check_MK_Agent (Server)

This is the output of an agent that is replying correctly

Click on Service Discovery and Save manual check configuration

27

Apply changes

28

After a couple of minutes, we’ll be able to see the list of all services the agent is monitoring on the host,

along with their full status and their ‘Perf-O-Meters’ that show performance metrics where applicable.

29

A preview of detailed Performance Graphs (rrd) are accessible hovering the mouse over the graph icon.

Clicking on the icon causes the graphs to be displayed in a new window

30

File System Monitoring

By default, Check_MK creates a service for every filesystem and a specific service called Disk IO Summary

that measures the throughput of block devices (disks) on Linux hosts. You can either have a single check for

every single disk or a summary check (which is the default) summing up the throughput of all disks

together.

It’s easy to change the default behavior as follows. Using WATO: Host & Service Parameters, Parameters for

discovered services, Storage, Filesystems and Files

31

Create a new rule

32

Do a Service discovery to add new services

33

Click Finish and apply changes. The filesystem output should change to something like this:

34

Linux Process Monitoring

Monitoring of Linux processes is achieved using the ps plugin. This looks through the list of current running

processes for those matching a certain name or regular expression (and optionally for those owned by a

certain user). It’s also possible to define thresholds for the number of running processes as well for cpu or

memory usage etc.

If you also need performance data, the ps.perf plugin does exactly the same as ps but, as might be

expected, outputs performance data.

Let’s monitor the httpd process:

As a first step I suggest checking the specific command line arguments of the process from the shell:

[root@checkmktst1 ~]# ps -ef | grep httpd

mysite 395 12169 0 11:10 ? 00:00:01 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

apache 396 1029 0 11:10 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

root 1029 1 0 Aug26 ? 00:00:13 /usr/sbin/httpd -DFOREGROUND

apache 1928 1029 0 Aug29 ? 00:00:02 /usr/sbin/httpd -DFOREGROUND

apache 3606 1029 0 11:23 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

apache 4427 1029 0 11:25 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

apache 7587 1029 0 11:34 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

apache 8519 1029 0 11:36 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

apache 8944 1029 0 11:37 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

apache 9086 1029 0 11:37 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

mysite 12169 1 0 Aug26 ? 00:00:10 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

root 14266 3560 0 11:55 pts/0 00:00:00 grep --color=auto httpd

apache 19129 1029 0 Aug31 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

apache 19486 1029 0 10:24 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

mysite 19513 12169 0 10:24 ? 00:00:03 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

apache 19514 1029 0 10:24 ? 00:00:00 /usr/sbin/httpd -DFOREGROUND

mysite 19545 12169 0 10:24 ? 00:00:02 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 19579 12169 0 10:24 ? 00:00:02 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 19686 12169 0 00:00 ? 00:00:00 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 19688 12169 0 00:00 ? 00:00:04 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 19689 12169 0 00:00 ? 00:00:02 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 19690 12169 0 00:00 ? 00:00:05 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 19978 12169 0 00:01 ? 00:00:04 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 27189 12169 0 10:51 ? 00:00:02 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

mysite 31447 12169 0 11:04 ? 00:00:02 /usr/sbin/httpd -f /omd/sites/mysite/etc/apache/apache.conf

Count how many httpd processes are running:

[root@checkmktst1 ~]# pidof httpd | wc -w

24

35

Now we can define the service check for the Apache process using the GUI: WATO: Manual Checks,

Application Processes & Services, State and count processes

Because we need to get all processes that have the string “/sbin/httpd *”, we need to use a simple regular

expression. The plugin homepage guides us through these steps.

36

Don’t forget to save and apply changes!

Following this we should see that the new service check has been applied and useful performance graphs

are being generated.

37

Log Files

Logfiles on Linux are monitored using the logwatch extension for the check_mk_agent.

-Copy mk_logwatch in the plugin directory.

cp /opt/omd/versions/1.2.8p9.cre/share/check_mk/agents/plugins/mk_logwatch /usr/lib/check_mk_agent/plugins

Create the file /etc/check_mk/logwatch.cfg with the following text:

/var/log/messages

 C Error*

 R TEST: This is a fake error, monitoring a logfile just as test \1

38

The first line specified the text file we want to monitor; the second means that if the agent finds the

expression “Error” (followed by any words) a critical error will be created. The last creates a rewrite rule,

customizing the message that will be displayed within the GUI

-Restart the agent

service xinetd restart

-Do a discovery on localhost so that the new check will be automatically added

-Activate changes

-Do a test

echo "Error" >> /var/log/messages

-Test the agent from command line

su - mysite

<<<job>>>

<<<local>>>

<<<logwatch>>>

[[[/var/log/messages]]]

Aug 26 15:35:01 checkmktst1 systemd: Created slice user-986.slice.

Aug 26 15:35:01 checkmktst1 systemd: Starting user-986.slice.

Aug 26 15:35:01 checkmktst1 systemd: Started Session 409 of user mysite.

Aug 26 15:35:01 checkmktst1 systemd: Starting Session 409 of user mysite.

Aug 26 15:35:01 checkmktst1 systemd: Started Session 410 of user mysite.

Aug 26 15:35:01 checkmktst1 systemd: Starting Session 410 of user mysite.

Aug 26 15:35:01 checkmktst1 systemd: Started Session 411 of user mysite.

Aug 26 15:35:01 checkmktst1 systemd: Starting Session 411 of user mysite.

Aug 26 15:35:02 checkmktst1 systemd: Removed slice user-986.slice.

Aug 26 15:35:02 checkmktst1 systemd: Stopping user-986.slice.

C TEST: This is a fake error, monitoring a logfile just as test \1

Aug 26 15:35:09 checkmktst1 su: (to mysite) root on pts/0

39

-Loot at WATO to check if the CRITICAL has been generated

40

Windows Devices

Download and Install the check_mk_agent.msi on the Windows server. The same steps that we carried out

for Linux also apply to Windows devices.

Windows Event Viewer

By default the Windows agent sends all non-informational messages to the Check_MK server. We can see

here that Check_MK automatically detected an error in the Windows Event Log.

Since the agent is completely configuration-less, it doesn’t do specific filtering of events. It simply looks for

messages of type Warning or Error. This behavior can be changed by creating a file called check_mk.ini in

the agent directory but, in my opinion, this isn’t the best way - if you have hundreds of servers, re-

deploying the configuration file and restarting all agents can be a pain. A better approach is to create

“centralized” rules which specify a list of "windows event id" or strings for each “Windows event log” that

you consider critical. I know that this solution requires some time to optimize, but with a bit of experience

41

(and Google searching!), it can have excellent results. For example, in my environment I added some rules

relating to Oracle (e.g. “ORA-RAC”), MSSQL (e.g. cluster failed) etc.

Click on Logfile Pattern Analyzer, Edit Logfile Rules

In this picture you can see the rule for System event log. Please pay attention to the order of the rules! See

that ignore is on the bottom, and then I’m adding values on the top as they fire from the top down. Note

the WARNING or CRITICAL entries I’m making for the specific entries I’ve added.

42

43

I test these on a Windows server using eventcreate (in this example I’m using the string “testeventviewer

CHECKMK” that isn’t present in the previous screenshot but for which I’ve added a rule in my configuration)

C:\Users\Administrator>eventcreate /L APPLICATION /t ERROR /id 500 /so testevenviewer /d

"testeventviewer CHECKMK"

44

Windows Services

It’s also possible to monitor Windows Services but, in this case, we need to specify the name of the services

that we would like to monitor. We can specify a list of services that should be monitored on all hosts or just

on some of them. In this example I’ll show how to monitor “Terminal Server Service” on host w2012tst1.

In order to monitor services you first need to determine which services are of interest to you. The easiest

way is to look at the raw output of the agent and look for the section <<<services>>>. You can use cmk -d

for this:

OMD[mysite]:~$ cmk -d w2012tst1 | fgrep -A 100 '<<<services>>>' | grep -i running

BFE running/auto Base Filtering Engine

BrokerInfrastructure running/auto Background Tasks Infrastructure Service

CertPropSvc running/demand Certificate Propagation

Check_MK_Agent running/auto Check_MK_Agent

COMSysApp running/demand COM+ System Application

CryptSvc running/auto Cryptographic Services

...

...

...

TermService running/demand Remote Desktop Services

The first column of the output is the exact internal name of the service. Let's say you want to check if

TermService (Windows Terminal Server) is running on host w2012tst1.

WATO, Manual Checks

45

Create a rule like this one:

Force a host discovery using the command line or the GUI:

46

What WATO has done is write the following configuration file:

OMD[mysite]:/opt/omd/sites/mysite$ cat

/opt/omd/sites/mysite/etc/check_mk/conf.d/wato/windows/rules.mk

Created by WATO

encoding: utf-8

logwatch_rules = [

 ([('C', u'testeventviewer*', u''), ('I', u'', u'')], ['/' + FOLDER_PATH + '/+'],

ALL_HOSTS, [u'Application$'], {'comment': u'This filter decides which events to take from

the "Application" Windows Event Log\n', 'description': u'Filter Application Windows Event

Log'}),

] + logwatch_rules

47

static_checks.setdefault('services', [])

static_checks['services'] = [

 (('services', 'TermService', {}), ['/' + FOLDER_PATH + '/+'], ['w2012tst1'],

{'description': u'Terminal Server Service monitored on host w2012tst1'}),

] + static_checks['services']

host_groups = [

 ('windowshg', ['/' + FOLDER_PATH + '/+'], ALL_HOSTS, {'comment': u'All hosts in

Windows folder are automatically placed in the windowshg hostgropu\n', 'description':

u'Windows hostgroup assignement'}),

] + host_groups

If you have some services that should always be running on ALL windows hosts, the best way is create the

rule that applies to ALL Windows Hosts; to do that, don’t fill the Explicit hosts option.

This time, WATO changed the following configuration file:

OMD[mysite]:/opt/omd/sites/mysite$ tail -5

/opt/omd/sites/mysite/etc/check_mk/conf.d/wato/rules.mk

static_checks['services'] = [

48

 (('services', 'TermService', {}), [], ALL_HOSTS, {'comment': u'On ALL Windows Hosts,

Terminal Services should always be up and running\n', 'description': u'Terminal Server

Service monitored on ALL Windows Hosts'}),

] + static_checks['services']

Let’s add DnsCache (windows DNS client) to the monitored services, and do a test by stopping the

DNSClient.

To add the new service, create another rule using WATO or manually change the configuration file and

reload the configuration:

OMD[mysite]:/opt/omd/sites/mysite$ cat

/opt/omd/sites/mysite/etc/check_mk/conf.d/wato/windows/rules.mk

static_checks['services'] = [

 (('services', 'TermService', {}), ['/' + FOLDER_PATH + '/+'], ALL_HOSTS, {'comment':

u'On ALL Windows Hosts, Terminal Services should always be up and running\n',

'description': u'Terminal Server Service monitored on ALL Windows Hosts'}),

 (('services', 'Dnscache', {}), ['/' + FOLDER_PATH + '/+'], ALL_HOSTS, {'comment':

u'The windows service that manage dnsclient should be always up and running\n',

'description': u'DnsCache monitored on ALL Windows Hosts'}),

] + static_checks['services']

Now stop the service on the windows host and wait a minute. A CRITICAL service should be displayed!

49

Microsoft SQL Server

This is accomplished using the plugin “mssql.vbs” the documentation for which says the following:

The current implementation of the check uses the "trusted authentication" where no

user/password needs to be created in the MSSQL server instance by default. It is only

needed to grant the user as which the Check_MK windows agent service is running access to

the MSSQL database.

Another option is to create a mssql.ini file in MK_CONFDIR and write the credentials of a

database user to it which shall be used for monitoring:

[auth]

type = db

username = monitoring

password = secret-pw

I tested against Microsoft SQL Server 2014 64bit on Windows 2012 R2 using the default “trusted

authentication”. This didn’t require any steps either on the SQL side or in check_mk.ini

Steps:

 Copy mssql.vbs from check_mk host to the agent plugin folder, in my case: C:\Program Files

(x86)\check_mk\plugins

 Restart the agent

 Do a service discovery adding unmonitored services

 Activate Changes

50

46 new services were added to my w2012tst1 host:

Note: Since version 1.2.8p13, Microsoft Sql Server 2016 is also supported

51

Microsoft Terminal Services

Several Windows checks are based on Performance Counters. These are special objects provided by the

Windows operating system that contain information about throughput, queue lengths, latencies and other

numbers of the system and applications like MS Exchange, MSSQL, IIS etc

Because there is no native support for Terminal Services, we need to take advantage of Performance

Counters. I fought a little bit with this task but, thanks again to the mailing list, I was able to do it in this

way:

 On the windows host run regedit and export the following key:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib_V2Providers]

 Open the file and search the string Terminal Services

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Perflib_V2Providers\{f3b975e7-e068-4f66-81ef-b23e0a0e64c9}\{fc9e399c-

c70a-4458-8430-ca249c371eb3}]

"NameResource"=dword:00000001

"ExplainResource"=dword:00000003

"NeutralName"="Terminal Services"

"InstanceType"=dword:00000000

"First Counter"=dword:00000780

"Last Counter"=dword:00000786

"CounterBlock"=hex:01,00,00,00,00,00,01,00,01,00,00,00,00,00,00,00,64,00,00,00,\

 00,00,00,00,05,00,00,00,07,00,00,00,00,00,00,00,ff,ff,ff,ff,ff,ff,ff,ff,ff,\

……………………

 Take the hexdecimal value of “First Counter” and convert in decimal. In this case:

00000780 = 1920

52

 Edit check_mk.ini and add the following string in the winperf section

[winperf]

 # Select counters to extract. The following counters

 # are needed by checks shipped with check_mk.

 # counters = 10332:msx_queues

 # counters = 638:tcp_conn

 counters = 1920:ts_sessions

 Restart the agent

 Do a service discovery adding unmonitored services

53

Network Devices

Network devices (switches, router, firewall, balancer etc.) are monitored using the SNMP protocol. SNMP
uses UDP as its transport protocol. If management traffic needs to traverse firewalls, make sure that the
following default ports are open:

 UDP 161: Used when management stations communicate with agents, e.g. Polling
 UDP 162: Used when agents send unsolicited Traps to the management station

During the wizard, please be sure to select SNMP (Networking device, Appliance) in the Agent type combo

box.

54

Click on Service Discover, Save manual check configuration

55

As usual apply the changes and wait a while to have the new device appear.

In this case a CRITICAL service will fire up in case of hardware failure and, depending on the check

parameters, WARN or CRIT when the port status changes (i.e. is down), when the link speed changes (e.g. a

port expected to be set to 1GBit/s operates only at 100MBit/s), when the absolute or percentage traffic of

a port exceeds certain levels or if the rate of errors or discards exceeds configurable limits.

By default, Check_MK doesn’t inventory Port-Channels. Port-Channels are aggregated physical interfaces

which are usually used for inter-switch connectivity. After a Google search, I found a post explaining how to

fix that: https://sitweak.wordpress.com/2012/08/16/monitoring-port-channel-on-cisco-switchesrouters-

with-check_mk/

I don’t understand the reason behind that choice - in my opinion the default should be to always monitor.

https://sitweak.wordpress.com/2012/08/16/monitoring-port-channel-on-cisco-switchesrouters-with-check_mk/
https://sitweak.wordpress.com/2012/08/16/monitoring-port-channel-on-cisco-switchesrouters-with-check_mk/

56

57

Click Save and Activate changes

58

Managing Thresholds

A threshold is a range with an alert level, either warning or critical. The theory is that the plugin will do
some sort of check which returns back a numerical value, or metric, which is then compared to the warning
and critical thresholds. To avoid useless alerts, I suggest to define a certain number of check attempts
before to send out alarms and notifications. For example: CPU spikes are quite usual and normal thus it
would be useful to be notified only when its consumption is too much high for more than a specified time
period.
In this example, a CPU threshold is setup so that a CRITICAL service will be created only if the percentage of
CPU utilization is above 90 % for more than 5 minutes.

WATO, Host & Service Parameters, Parameters for discovered services, CPU utilization on Linux/UNIX

59

Given I'm using the default check periods of 60 seconds all I need to do is set max_check_attempt to 5
(60*5=300 seconds), which gives five minutes of checks before the state switches from SOFT to HARD.

WATO, Host & Service Parameters, Monitor Configuration, Maximum number of check attempts for service

60

61

To check if the rule has been applied, an easy way is to choose a server and look for the “CPU Utilization”
service parameters

Let’s do some testing using the stress utility

[root@checkmktst1 ~]# stress --cpu 8 --timeout 600

stress: info: [12082] dispatching hogs: 8 cpu, 0 io, 0 vm, 0 hdd

After 5 minutes, the service should be in CRITICAL state

62

Hardware & Software Inventory

Check_MK supports hardware & software inventories. While SNMP devices don’t require any additional

components, for Windows & Linux devices we need a plugin.

The first step is to enable Hardware/Software-Inventory by creating a rule:

63

64

Click Save and remember to apply changes.

Now it’s time to install the plugin for both Linux and Windows server:

Linux:

-Copy the “mk_inventory” plugin in the “local” folder of the linux agent. In my case the path is:

/usr/lib/check_mk_agent/local/mk_inventory

Make sure it is executable

chmod +x /usr/lib/check_mk_agent/local/mk_inventory

If you are not sure about it, you can check it by simply running the agent from the command line and

checking the output which should show the current configuration:

OMD[mysite]:~$ /usr/bin/check_mk_agent

<<<check_mk>>>

Version: 1.2.8p9

AgentOS: linux

Hostname: checkmktst1

AgentDirectory: /etc/check_mk

DataDirectory: /var/lib/check_mk_agent

SpoolDirectory: /var/lib/check_mk_agent/spool

PluginsDirectory: /usr/lib/check_mk_agent/plugins

LocalDirectory: /usr/lib/check_mk_agent/local

…………

-Force inventory on check_mk server:

65

OMD[mysite]:~$ cmk -i

66

Windows:

-Copy the script “mk_inventory.vbs” in the “local” directory of Check_MK agent. In my case it was

C:\Program Files (x86)\check_mk\local\mk_inventory.vbs.

-Restart the windows service

net stop check_mk_agent && net start check_mk_agent

Force inventory on the server side:

cmk –i

Click on the windows host to check what has been discovered:

67

Cisco:

Click on Inventory button

68

69

Using custom plugins

Sometimes it’s necessary to create custom checks and Check_MK makes this possible using Local Checks,

MRPE or MKP.

As with folders, Tags and Hostgroups they are three different ways of doing the same thing and each one of

them has pros and cons.

This is a summary:

Local Checks are used whenever you want something really quick and simple. Just create a script with your

preferred language and place it on the monitored machine.

Pros:

 easy and asynchronous

Cons:

 no central management using WATO, all parameters will be managed inside the script.

MRPE is useful if you want a soft migration from NRPE to Check_MK.

Pros:

 supports any kind of Nagios plugin.

Cons:

 all plugins on localhost are called at the same time, once per cycle; there is no way to call some

more often than others.

 The plugins are called in direct sequence - one after another. No parallelization takes place.

MKP is the native plugin format and is definitely the best/preferred method. The new packaging
mechanism of Check_MK supports you in distributing your extensions and using extensions from other
people by allowing you to easily create, install, update and remove packages of extensions, which are
portable between all installations of Check_MK - regardless of the installations paths chosen at setup.

 Pros:

 Native format, Portability, WATO support, overall efficiency

Cons:

 Requires python knowledge

70

Local Checks

Check_MK also has the concept of “local checks” that are very easy and straightforward to use and give the

ability to run any kind of script or program on an agent.

Example:

a) Create a script like this and place it in the local directory of the Check_MK agent

#!/bin/bash

DIRS="/var/log /tmp"

for dir in $DIRS

do

 count=$(ls $dir | wc --lines)

 if [$count -lt 50] ; then

 status=0

 statustxt=OK

 elif [$count -lt 100] ; then

 status=1

 statustxt=WARNING

 else

 status=2

 statustxt=CRITICAL

 fi

 echo "$status Filecount_$dir count=$count;50;100;0; $statustxt - $count files in

$dir"

done

If you don’t know the path to the local directory just do the following:

[root@centos7tst1 ~]# /usr/bin/check_mk_agent | grep -i local

Hostname: centos7tst1

LocalDirectory: /usr/lib/check_mk_agent/local

……

b) Do an inventory of the host running

cmk –I centos7tst1

c) The new service should show up

71

MRPE – Nagios Plugins

These require just a couple of steps:

a) Copy the plugin into the agent plugin directory.

b) Create a configuration file mrpe.cfg and place it in the agent's configuration directory; if you did not

change that at setup, the complete path is /etc/check_mk/mrpe.cfg.

/etc/check_mk/mrpe.cfg
LOAD /usr/lib/nagios/plugins/check_load -w 2 -c 5

FS_var /usr/lib/nagios/plugins/check_disk /var

FS_hirn /usr/lib/nagios/plugins/check_disk /hirn

Aptitude /usr/lib/nagios/plugins/check_apt

Smart_sda /usr/lib/nagios/plugins/check_ide_smart -d /dev/sda –n

c) Inventory the host

cmk -I --checks=mrpe somehost123

MKP plugins

Instead of using Local checks or MRPE, there are lot of external plugins available in the native Check_MK

format (mkp). There is a catalog on https://mathias-kettner.de/checkmk_check_catalogue.html but it’s also

possible to create your own using python.

To show the installation, I chose MTR, a nice plugin which is very useful to use when troubleshooting

network problems. It was created by BenV and you can download it from his website:

https://notes.benv.junerules.com/mtr/

The reason why I think this plugin is really great is that it uses MTR, a tool that combines the functionality

of the 'traceroute' and 'ping' programs in a single network diagnostic tool.

As the documentation for mtr states, it investigates the network connection between the host mtr runs on

and a user-specified destination host. After it determines the address of each network hop between the

machines, it sends a sequence ICMP ECHO requests to each one to determine the quality of the link to each

machine. As it does this, it prints running statistics about each machine. For more information please visit

its website https://www.bitwizard.nl/mtr/

On the Check_MK host:

 Download the latest version from the website and place in /tmp

 Install using mkp

OMD[mysite]:~$ mkp install /tmp/mtr-0.5.2.mkp

 Copy the plugin and the configuration file onto the machine where you want to run the pings from.

Please note that you need to place the plugin in the agent’s plugins folder and the associated cfg file in

the agent’s configuration folder

https://mathias-kettner.de/checkmk_check_catalogue.html
https://notes.benv.junerules.com/mtr/
https://www.bitwizard.nl/mtr/

72

[root@checkmktst1 tmp]# scp /opt/omd/sites/mysite/local/share/check_mk/agents/mtr

root@10.39.239.99:/usr/lib/check_mk_agent/plugins/

[root@checkmktst1 tmp]# scp

/opt/omd/sites/mysite/local/share/check_mk/agents/cfg_examples/mtr.cfg

root@10.39.239.99:/etc/check_mk/

On the client machine:

 Amend the configuration file, adding hosts that you need to monitor:

[root@centos7tst1 tmp]# cat /etc/check_mk/mtr.cfg

Mtr Check_MK configuration

NOTE: your MTR report shouldn't take longer than 15 minutes

[DEFAULTS]

type=icmp # icmp, tcp or udp

count=10 # number of pings per mtr report

force_ipv4=0 # force ipv4, exclusive with force_ipv6

force_ipv6=0 # force ipv6, exclusive with force_ipv4

size=64 # packet size

time=0 # minimum time between runs, 0 / default means run if mtr doesn't run

anymore

port=80 # UDP/TCP port to connect to

dns=0 # Use DNS resolution to lookup addresses

address= # Bind to source address

interval= # time MTR waits between sending pings

timeout= # ping Timeout, see mtr man page

[www.google.com]

type = icmp

force_ipv4 = true

[ipv6.google.com]

type = icmp

force_ipv6 = true

 Restart the agent

 Do a service discovery adding unmonitored services

73

This is the result:

I don’t think any comment is necessary here, this is really amazing!

74

Because this is a native plugin, it’s possible to manage parameters using WATO, Manual Checks

75

Monitor Apache Webserver

In this example, I’m going to monitor Apache using its server-status module that must be manually enabled

in the Apache configuration file.

<IfModule mod_status.c>

 <Location /server-status>

 SetHandler server-status

 Order deny,allow

 Deny from all

 Allow from 127.0.0.1 ::1

 </Location>

 # Keep track of extended status information for each request

 ExtendedStatus On

</IfModule>

 Copy the apache plugin in the agent folder

76

cp -pi /opt/omd/versions/1.2.8p9.cre/share/check_mk/agents/plugins/apache_status

/usr/lib/check_mk_agent/plugins/

 Do a service discovery and apply changes

77

Monitor Mysql Server

The base agent doesn’t include native support but check_mk created mk_mysql official plugin. I did a test

on mariadb 5.5 on centos 7.2 64 bit but the same applies to other mysql versions even when running on

Windows

 On mysql server, create a user only for monitoring, giving to it the rights with following SQL statement

MariaDB [(none)]> GRANT SELECT, SHOW DATABASES ON *.* TO 'mysqlmonitor'@'localhost'

IDENTIFIED BY 'mysqlmonitor';

 Copy the plugin from check_mk to the mysql host

[root@checkmktst1]# scp

/opt/omd/versions/1.2.8p13.cre/share/check_mk/agents/plugins/mk_mysql

root@10.39.239.99:/usr/lib/check_mk_agent/plugins

 Create the file mysql.cfg in the agent configuration folder.

[root@centos7tst1 ~]# cat /etc/check_mk/mysql.cfg

[client]

user=mysqlmonitor

password=mysqlmonitor

 Change mysql.cfg permissions. Setting mode 400 ensures it will not be readable for non-root users:

chmod 400 /etc/check_mk/mysql.cfg

 Restart the agent on the client machine

 Do a service discovery adding unmonitored services

Whenever a Mysql fail should occur, you will be warned

78

As suggested in the documentation, you should also monitor the mysql process, error log, innodb redo log

etc.

It’s also possible to monitoring any parameter you ever want, using the community plugin available at

http://exchange.check-mk.org/

To be honest, I expected something more by this plugin because Mysql is a really widespread product and

there are lot of metrics that should be monitored out of the box. I’m sure that it will be improved over time

but, in the meanwhile, I decided to use the excellent check_mysql_health from Console Labs.

There are a couple of possible paths:

 Install check_mysql_health on the check_mk host and create active checks for each parameter

 Install check_mysql_health directly on the mysql server and configure MPRE

I tested both of them but I’m going to show you only the second one because it is my preferred method

In this scenario the Mysql server’s hostname is centos7tst1 with ip address 10.39.239.99

Steps:

 On the Mysql server download and Install the plugin

[root@centos7tst1 tmp]# wget

https://labs.consol.de/assets/downloads/nagios/check_mysql_health-2.2.2.tar.gz

[root@centos7tst1 tmp]# tar xzvf check_mysql_health-2.2.2.tar.gz

[root@centos7tst1 tmp]# cd check_mysql_health-2.2.2/

[root@centos7tst1 check_mysql_health-2.2.2]# ./configure --

prefix=/usr/lib/check_mk_agent/plugins --with-nagios-user=root --with-nagios-group=root

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... /usr/bin/mkdir -p

checking for gawk... gawk

…………………….

…………………….

[root@centos7tst1 check_mysql_health-2.2.2]# make && make install

 Create the MRPE configuration file in /etc/check_mk/mrpe.cfg

mysqlhealth_connection-time /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --

hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode connection-

time

mysqlhealth_uptime /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --hostname

10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode uptime

mysqlhealth_threads-connected /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health

--hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode threads-

connected

mysqlhealth_threadcache-hitrate

/usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --hostname 10.39.239.99 --

username mysqlmonitor --password mysqlmonitor --mode threadcache-hitrate

http://exchange.check-mk.org/
https://labs.consol.de/index.html

79

mysqlhealth_qcache-hitrate /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --

hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode qcache-

hitrate

mysqlhealth_qcache-lowmem-prunes

/usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --hostname 10.39.239.99 --

username mysqlmonitor --password mysqlmonitor --mode qcache-lowmem-prunes

mysqlhealth_keycache-hitrate /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health -

-hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode keycache-

hitrate

mysqlhealth_bufferpool-hitrate /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health

--hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode

bufferpool-hitrate

mysqlhealth_bufferpool-wait-free

/usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --hostname 10.39.239.99 --

username mysqlmonitor --password mysqlmonitor --mode bufferpool-wait-free

mysqlhealth_log-waits /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --

hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode log-waits

mysqlhealth_tablecache-hitrate /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health

--hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode

tablecache-hitrate

mysqlhealth_table-lock-contention

/usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --hostname 10.39.239.99 --

username mysqlmonitor --password mysqlmonitor --mode table-lock-contention

mysqlhealth_index-usage /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --

hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode index-usage

mysqlhealth_slow-queries /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --

hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode slow-queries

mysqlhealth_long-running-procs /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health

--hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode long-

running-procs

mysqlhealth_open-files /usr/lib/check_mk_agent/plugins/libexec/check_mysql_health --

hostname 10.39.239.99 --username mysqlmonitor --password mysqlmonitor --mode open-files

 Change Mysql permission to allow connections coming from 10.39.239.99 that is the primary ip

address of the machine.

MariaDB [(none)]> GRANT SELECT, SHOW DATABASES ON *.* TO 'mysqlmonitor'@'10.39.239.99'

IDENTIFIED BY 'mysqlmonitor';

 On the check_mk host run a new host inventory

cmk –II centos7tst1

cmk -R

80

There are lot of parameters that can be monitored and it’s even possible run sql statemens using –mode sql

defining also thresholds. Please refer to the official documentation to get more more informations.

Ps: Reading werks, I noticed that check_mysql_health should be already included in the upcoming version

1.4.

Anyway, you still need to manually install the plugin on the monitored server if you are going to use the

second path

81

Monitor Physical Hardware

To properly monitor hardware (FAN, CPU, MEMORY, DISKs etc.) from the likes of HP or Dell, the first step is

to install and configure the agents on the running OS. Because the procedure is very simple and there are

many guides that show how to achieve exactly that, I’ll just show the "nagios" part for an HP Proliant

running Redhat 5.x

 Change SNMPD configuration

Because the default snmpd configuration doesn't expose all OIDs, we need to change the configuration by

adding or changing the following entries:

vi /etc/snmp/snmpd.conf

--------snmp.conf----------

sec.name source community

com2sec notConfigUser default public

groupName securityModel securityName

group notConfigGroup v1 notConfigUser

group notConfigGroup v2c notConfigUser

Make at least snmpwalk -v 1 localhost -c public system fast again.

name incl/excl subtree mask(optional)

view all included .1

view systemview included .1.3.6.1.2.1.1

view systemview included .1.3.6.1.2.1.25.1.1

group context sec.model sec.level prefix read write notif

access notConfigGroup "" any noauth exact all none none

 restart the snmpd service

service snmpd restart

 Test the new configuration using snmpwalk

From check_MK, check if we can get the model using snmpwalk

[root@checkmktst1 ~]# snmpwalk -v2c -c public 172.17.25.1 .1.3.6.1.4.1.232.2.2.4.2.0
SNMPv2-SMI::enterprises.232.2.2.4.2.0 = STRING: "ProLiant BL460c G7"

 Add the device changing the Agent type to: Dual: Check_MK Agent + SNMP and do a Service discovery

82

83

84

Monitor Vmware

In order to monitor VMware ESXi and vCenter Server, Check_MK has implemented a plugin that uses the

vSphere API that is much more efficient that other free plugins like check_esx3.pl or check_vmware_api.pl.

In the Vmware World, basically there are 2 kinds of environments:

 ESXi free – Should be used just for test or lab, no support, no vcenter, no backup using external tools

(apis locked out)

 vSphere that comes with different licensing options – It does include vCenter + a certain number of ESXi

hosts depending on the licence

In both cases, monitoring has the following requirements:

Read-only user on vsphere side

Tcp port 443 (check_mk towards vsphere)

Add vSphere Virtual Center

Add the vcenter host entering the Hostname, IPv4 Address and as Agent select Check_MK Agent even

though it isn’t really installed. Click on Save & Finish

Click Save & Finish

85

To enable the advanced monitoring, in WATO configuration go to Host & Service Parameters, Datasource

Programs and select Check state of VMware ESX via vSphere.

Create a new rule by clicking the button Create rule in folder and fill others fields as shown in the picture

below. Just please note that:

- as vSphere User Name, I created an ad-hoc user that has just read-only permission:

- Is possible to define which kind of informations to retrieve: Host Systems, Virtual Machines, Datastores,

Performance counters, License.

You can select all of them at the price of a longer check execution time

86

Click Save and do a new Bulk Service Discovery to add unmonitored services

87

Activate changes and look the discovered services

88

Lot of nice informations are retrieved from vCenter such as:

 esx_vsphere_datastores, shows all datastores (shared and local!) connected to ESXi hosts managed

by the vCenter Server.

 esx_vsphere_licenses, shows all VMware licenses stored on the vCenter Server (in fact the License

Manager on the Platform Services Controller)

 esx_vsphere_objects, shows connected ESXi hosts and VMs running on these hosts.

This is a basic monitoring and you could even stop here but there are a lot of precious informations missing

such as interfaces usage on every single hosts, HBA status, datastore read/write/latency etc.

A good Vmware administrator should know the vital importance of these metrics, in particular the latency

on datastores that caused me some headaches in the past. So let’s go on adding ESXi hosts.

Note: To monitor the Vcenter host itself (like any other standard server) it is enough to install check_MK

agent. Just please note that, in case of VCSA (linux virtual center appliance), we must allow incoming traffic

on port 6556.

There is a step by step guide on this blog: https://paulgrevink.wordpress.com/2016/08/22/check_mk-and-

vsphere-vcenter-server/

Add ESXi host managed by Vcenter

Under WATO, choose, Hosts and New Host enter the Hostname, IP and under Agent Type place a tick and

select Check_MK Agent. Just please note even I’m using root, a read-only user is recommended.

https://paulgrevink.wordpress.com/2016/08/22/check_mk-and-vsphere-vcenter-server/
https://paulgrevink.wordpress.com/2016/08/22/check_mk-and-vsphere-vcenter-server/

89

Click Save & Finish.

To avoid duplicated alarms, for each ESXi host managed by a vCenter Server we must create a new the rule
configuring items in this way:

 Host Systems, Select, will show detailed status of the ESXi host.
 Virtual Machines, do not Select, already set on the vCenter Server.
 Datastores, do not Select, already set on the vCenter Server.
 Performance Counters, Select, will show performance counters of the ESXi hosts.
 License Usage, do not Select.

90

Do a service discovery adding unmonitored services and activate changes. Host’s specific informations such

as Cpu/Memory, Datastore read/write/latency and network interfaces and HBA status will be displayed.

Add standalone ESXi hosts

The procedure is pretty much the same as that used to add hosts managed by the vCenter apart that all

options have to be selected during the ruleset creation .

91

92

This is a standalone hp dl 360g7 running ESXi free. The critical service is related to a power supply in failed

state.

Virtual Machines additional checks

As soon as you will install check_mk agent on virtual machines, additional checks we’ll added and, a great

thing about that, is that performance metrics (cpu/ram) will be retrieved directly from vcenter or ESXi host

and not from the OS. This is very important because in a Vmware environment, whenever you look at

performance, what it really important is to know the real resources assigned by the host and not those that

OS believe to have. A good example is cpu ready where the guest report high cpu usage but in reality it isn’t

having the right resources because there is competition on the host side. I won’t go through the details

because this is out of topic; if you want more informations about that, please have a look at the following

link: http://www.logicmonitor.com/blog/2013/02/25/a-tale-of-two-metrics-windows-cpu-or-vcenter-vm-

cpu/

After the agent installation on the guest, check_MK warned me about some missing services

http://www.logicmonitor.com/blog/2013/02/25/a-tale-of-two-metrics-windows-cpu-or-vcenter-vm-cpu/
http://www.logicmonitor.com/blog/2013/02/25/a-tale-of-two-metrics-windows-cpu-or-vcenter-vm-cpu/

93

Doing a new service discovery, they immediately appeared

94

Managing SNMP Traps

Nowadays, every good Enterprise monitoring solution has the ability to manage incoming SNMP Traps but

some do it better than others. I had a frustrating experience with some tools but Check_MK, as usual, does

it really well and in a clear and simple way.

Our goal is:

-receive incoming traps

-do a regex or filtering if necessary

-decide the level of criticality

-generate a service AUTOMATICALLY assigned to the monitored device

-AUTOCLEAR function meaning that if we receive an “OK” trap, the service should change from red (critical)

to green (OK)

I’m going to list all the required steps but please note that I found the official documentation a little bit

outdated and, depending on your environment (distribution as well Check_MK version and installation),

some additional steps could be required.

 Connect to Check_MK host and, from the command line, run:

[root@checkmktst1 ~]# su – mysite

OMD[mysite]:~$ omd config

 Enable embedded MKEVENTD_SNMPTRAP and MKEVENTD_SYSLOG

95

 WATO-Configuration, Event Console, New Rule Pack

96

 Click the button Edit the rules in this pack

 Create a new rule like this

97

98

 Reload the configuration

 Test the configuration

From the “centos7tst1” host run:

[root@centos7tst1 ~]# snmptrap -v 1 -c public 10.39.239.100 .1.3.6.1 10.39.239.99 6 17 ''

.1.3.6.1 s "host 3 critical state"

 Check if event has been created WATO-View, Events

99

 Check that event has been AUTOMATICALLY associated to the correct host “centos7tst1”

 Test the AUTOCLEAR mechanism is working correctly sending the following trap from the remote host

[root@centos7tst1 ~]# snmptrap -v 1 -c public 10.39.239.100 .1.3.6.1 10.39.239.99 6 17 ''

.1.3.6.1 s "host 3 OK state"

100

No open events should be displayed in WATO-Views, Events

But in WATO-Views, Recent Event History we can see that even the OK message has been received

101

The Event service should be now green (OK)

102

Managing Notifications

Notifications are quite a complex topic and Check_MK works very hard to make them as flexible as

possible. Once again the best explanation of the thinking behind this comes from the Check_MK

documentation: https://mathias-kettner.de/checkmk_rbn.html

Basically, notifications are managed using the new RBN (Rule Based Notifications) that add extra flexibility

to the previous mechanism called Flexible Notifications by providing the separation of contact-assignment

and notification.

The first step is to enable RBN and a failback address

Now create a Notification Rule or change the exiting one: WATO, Notifications

https://mathias-kettner.de/checkmk_rbn.html

103

There are plenty of parameters that should satisfy all needs

104

Contact group

Sometimes it is necessary to notify all people who are members of a specified contact group. This is done

with the module Contact Groups. In this example, I created the Sysadmin_all contact group cloning the

existing one called all

Important: put some hosts/services into that contact group. WATO: Host & Service Parameters / Grouping /

Assignment of hosts/services to contact groups.

105

Create a user, enter an email address and put him into that contact group: WATO: Users & Contacts

106

Activate Changes in WATO

Analysis

To have alert notifications sent via email, make sure that your monitoring server is correctly setup so that it

can send them. Test this with

echo "Mailbody" | mail -s "Testsubject" test@mycompany.com

If everything is setup properly, you should receive emails as soon as a CRITICAL service is detected. I also

suggest to check the email log file, in my case /var/log/maillog when troubleshooting this.

An Analysis tool is also available in the Notifications Configuration menu

107

Check_MK Update

The update process is generally very simple but, before proceeding, don’t forget to take a backup and read

the release notes very carefully. Problems could arise (especially with major upgrades) and it’s good to

have a backout process just in case.

Package installation

Download the latest package for your distribution and install it as shown:

[root@checkmktst1 ~]# cd /tmp/

[root@checkmktst1 tmp]# wget https://mathias-kettner.de/support/1.2.8p13/check-m

k-raw-1.2.8p13-el7-36.x86_64.rpm

--2016-10-21 11:33:06-- https://mathias-kettner.de/support/1.2.8p13/check-mk-ra

w-1.2.8p13-el7-36.x86_64.rpm

Resolving mathias-kettner.de (mathias-kettner.de)... 178.248.246.154

Connecting to mathias-kettner.de (mathias-kettner.de)|178.248.246.154|:443... co

nnected.

HTTP request sent, awaiting response... 200 OK

108

Length: 60640908 (58M) [application/x-redhat-package-manager]

Saving to: ‘check-mk-raw-1.2.8p13-el7-36.x86_64.rpm’

91% [==================================>] 55,312,384 924KB/s in 47s

2016-10-21 11:33:53 (1.13 MB/s) - Connection closed at byte 55312384. Retrying.

--2016-10-21 11:33:54-- (try: 2) https://mathias-kettner.de/support/1.2.8p13/c

heck-mk-raw-1.2.8p13-el7-36.x86_64.rpm

Connecting to mathias-kettner.de (mathias-kettner.de)|178.248.246.154|:443... co

nnected.

HTTP request sent, awaiting response... 206 Partial Content

Length: 60640908 (58M), 5328524 (5.1M) remaining [application/x-redhat-package-m

anager]

Saving to: ‘check-mk-raw-1.2.8p13-el7-36.x86_64.rpm’

100%[+++++++++++++++++++++++++++++++++++===>] 60,640,908 1.76MB/s in 2.9s

2016-10-21 11:33:57 (1.76 MB/s) - ‘check-mk-raw-1.2.8p13-el7-36.x86_64.rpm’ save

d [60640908/60640908]

[root@checkmktst1 tmp]# rpm -Uvh check-mk-raw-1.2.8p13-el7-36.x86_64.rpm

Preparing... ################################# [100%]

Updating / installing...

 1:check-mk-raw-1.2.8p13-el7-36 ################################# [100%]

New default version is 1.2.8p13.cre.

Switching to the new version

Switch to the new version using the OMD command:

[root@checkmktst1 tmp]# su - mysite

Last login: Thu Oct 20 16:59:39 CEST 2016 on pts/0

OMD[mysite]:~$ omd stop

Removing Crontab...OK

Stopping dedicated Apache for site mysite.....OK

Stopping nagios.....OK

Stopping npcd...OK

Stopping rrdcached...waiting for termination...OK

Stopping mkeventd...killing 15658......OK

OMD[mysite]:~$ omd update

109

OMD[mysite]:~$ omd start

110

Conclusion

I don't claim that check_MK is the best existing monitoring tool simply because I didn't tried all existing

products but I can safely say that it is the best I have ever used. I have been also impressed by their

clearness about the product's price: no complicated licensing model that force you to contact some sales

manager (but they are willing to help you and know very well the product). In my opinion the price of the

Enterprise Edition is ridiculous compared to other products and provides some nice additional features

(apart the support) that it's worth a try.

The documentation is also very good even there are room for improvements and I have been able to

monitor lot of enterprise class devices in few days without any headache thank also to the check_MK

mailing list that is very active.

